Local convergence of an augmented Lagrangian method for matrix inequality constrained programming
نویسنده
چکیده
We consider nonlinear optimization programs with matrix inequality constraints, also known as nonlinear semidefinite programs. We prove local convergence for an augmented Lagrangian method which uses smooth spectral penalty functions. The sufficient second-order no-gap optimality condition and a suitable implicit function theorem are used to prove local linear convergence without the need to drive the penalty parameter to 0.
منابع مشابه
An Augmented Lagrangian Method for a Class of Lmi-constrained Problems in Robust Control Theory
We present a new approach to a class of non-convex LMI-constrained problem in robust control theory. The problems we consider may be recast as the minimization of a linear objective subject to linear matrix inequality (LMI) constraints in tandem with non-convex constraints related to rank conditions. We solve these problems using an extension of the augmented Lagrangian technique. The Lagrangia...
متن کاملGlobal convergence rates of augmented Lagrangian methods for constrained convex programming
Abstract. Augmented Lagrangian method (ALM) has been popularly used for solving constrained optimization problems. Its convergence and local convergence speed have been extensively studied. However, its global convergence rate is still open for problems with nonlinear inequality constraints. In this paper, we work on general constrained convex programs. For these problems, we establish the glob...
متن کاملPartially Augmented Lagrangian Method for Matrix Inequality Constraints
We discuss a partially augmented Lagrangian method for optimization programs with matrix inequality constraints. A global convergence result is obtained. Applications to hard problems in feedback control are presented to validate the method numerically.
متن کاملLocal Convergence Properties of
We consider the local convergence properties of the class of augmented Lagrangian methods for solving nonlinear programming problems whose global convergence properties are analyzed by Conn et al. (1993a). In these methods, linear constraints are treated separately from more general constraints. These latter constraints are combined with the objective function in an augmented Lagrangian while t...
متن کاملAn Exact Augmented Lagrangian Function for Nonlinear Programming with Two-Sided Constraints
This paper is aimed toward the definition of a new exact augmented Lagrangian function for two-sided inequality constrained problems. The distinguishing feature of this augmented Lagrangian function is that it employs only one multiplier for each two-sided constraint. We prove that stationary points, local minimizers and global minimizers of the exact augmented Lagrangian function correspond ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optimization Methods and Software
دوره 22 شماره
صفحات -
تاریخ انتشار 2007